

An Introduction to Preclinical Therapeutics Development

Anne Pariser, M.D.

Director, Office of Rare Diseases Research National Center for Advancing Translational Sciences, NIH

> DEE-P September 21, 2020

Introduction to Preclinical Therapeutics Development: Outline

- NIH: Who we are
- Precision medicine primer
- Preclinical development overview
- Keypoints
- Resources for you

Who We Are

- National Institutes of Health (NIH): US's medical research agency
 - Mission: "Turning Discovery into Health"
 - Largest public funder of biomedical research in the world
- 27 Institutes and Centers (ICs), e.g.,
 - National Institute of Allergy and Infectious Diseases (NIAID)
 - National Institutes of Neurological Disorders and Stroke (NINDS)
- National Center for Advancing Translational Sciences (NCATS)
 - Established in 2012
 - Only NIH Center focused on translational sciences
 - Translation = process of turning observations (e.g., lab, clinic) into interventions that improve health

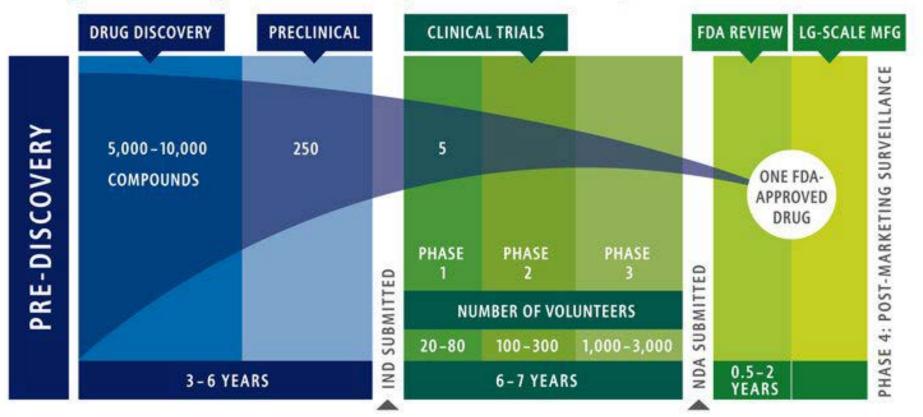
NCATS Mission

Answer critical research questions to transform the translation research process so that new treatments and cures for diseases can be delivered to patients faster

About NCATS: <u>https://ncats.nih.gov/about</u>

National Center for Advancing Translational Sciences

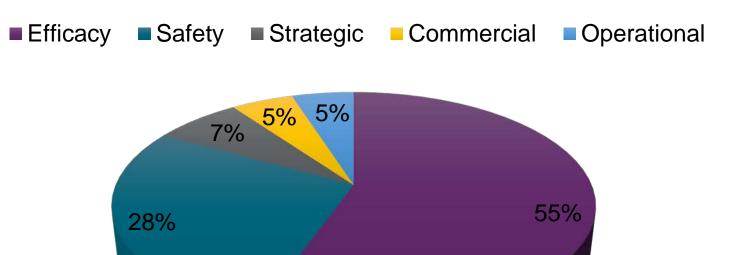
Office of Rare Diseases Research (ORDR)


Accelerating rare diseases research to benefit patients

The Problem: Product Development Time and Costs: 10–15 Years and >\$2.6 Billion USD

Drug Discovery and Development: A LONG, RISKY ROAD

Sources:


- Pharmaceutical Research and Manufacturers of America, *Drug Discovery and Development: Understanding the R&D Process*, <u>www.innovation.org</u>
- DiMasi, JA and Grabowski, HG (2007), The Cost of Biopharmaceutical R&D: Is Biotech Different?, Managerial and Decision Economics 28: 469-479

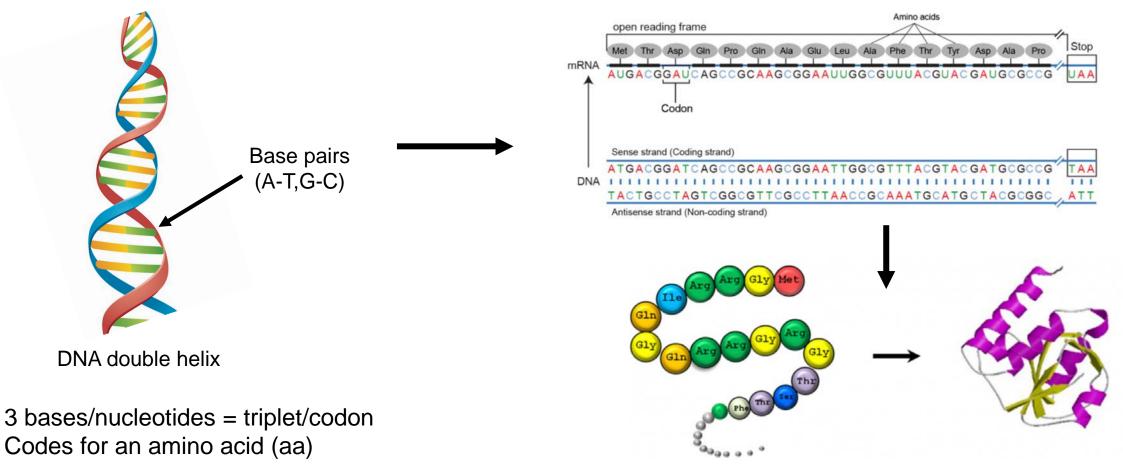
6

Why Drugs Fail in Clinical Phase of Development

Reasons for Drug Development Failure - Approval Rate for Drugs Entering Clinical Development < 12%

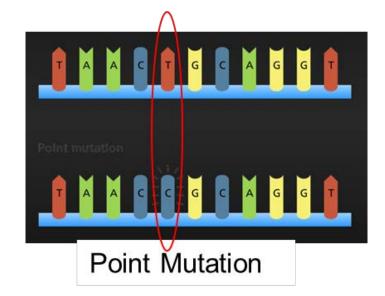
Sullivan T. March 21, 2019. <u>https://www.policymed.com/2014/12/a-tough-road-cost-to-develop-one-new-drug-is-26-billion-approval-rate-for-drugs-entering-clinical-de.html</u> and *Arrowsmith and Miller, Nat Rev Drug Disc 12: 569 (2013)*

But first - A few words about modern rare disease drug development...


- ~7,000⁺ rare diseases
- ~80+% genetic/inherited "single gene" disorders (monogenic)

Genetics whirlwind refresher (puppies at the end)

- Single gene aka monogenic disorder
- Caused by a deleterious change (mutation) in one gene


Many aas \rightarrow protein, e.g, enzyme, structural


What Can Go Wrong?

"Pathogenic variants"

Some examples

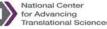
- Missense mutation: single base pair causes the substitution of a different aa in the protein
 - Sickle cell disease
- Nonsense mutation: premature stop codon
 - → truncated or absent protein
- Frameshift mutation: add or subtract a nucleotide
 - → alters the "reading frame"
- Gain of function mutation: enhanced or new activity on a protein
 - E.g., dominant, Hutchinson-Gilford Progeria
- And more....

Bottom Line: It's in the Genes

- Many different underlying mutations
 - Considerable diversity within and between genetic diseases
- Thus, many different approaches to how to treat the disease, for example:
- Loss of function/deficiency state, e.g.,
 - add back enzyme/protein/gene, such as gene therapy, enzyme replacement therapy, drugs to enhance residual function, "read-through" drugs
 - Add or subtract elements upstream or downstream from the defect
- Gain of function \rightarrow silencing/inhibition, e.g.,
 - Antibodies, drug-inhibitors
 - anti-sense oligonucleotides (AONs)
- Everything \rightarrow gene editing

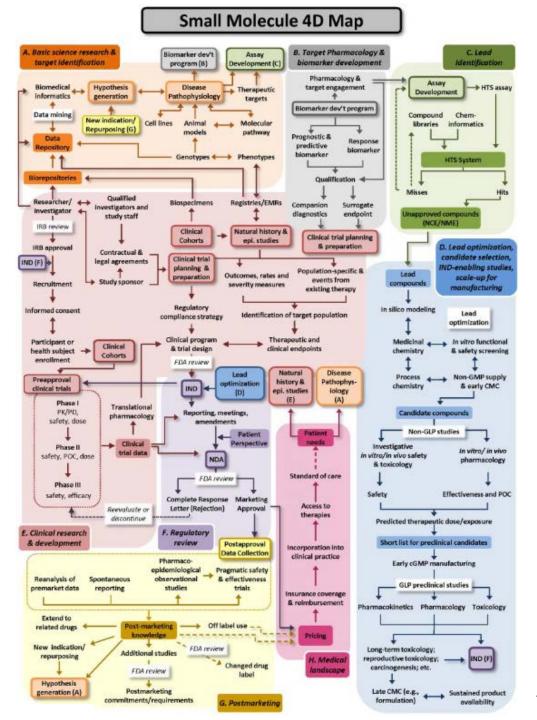
NIH

Active area of research, no approved therapies currently


Precision Medicine

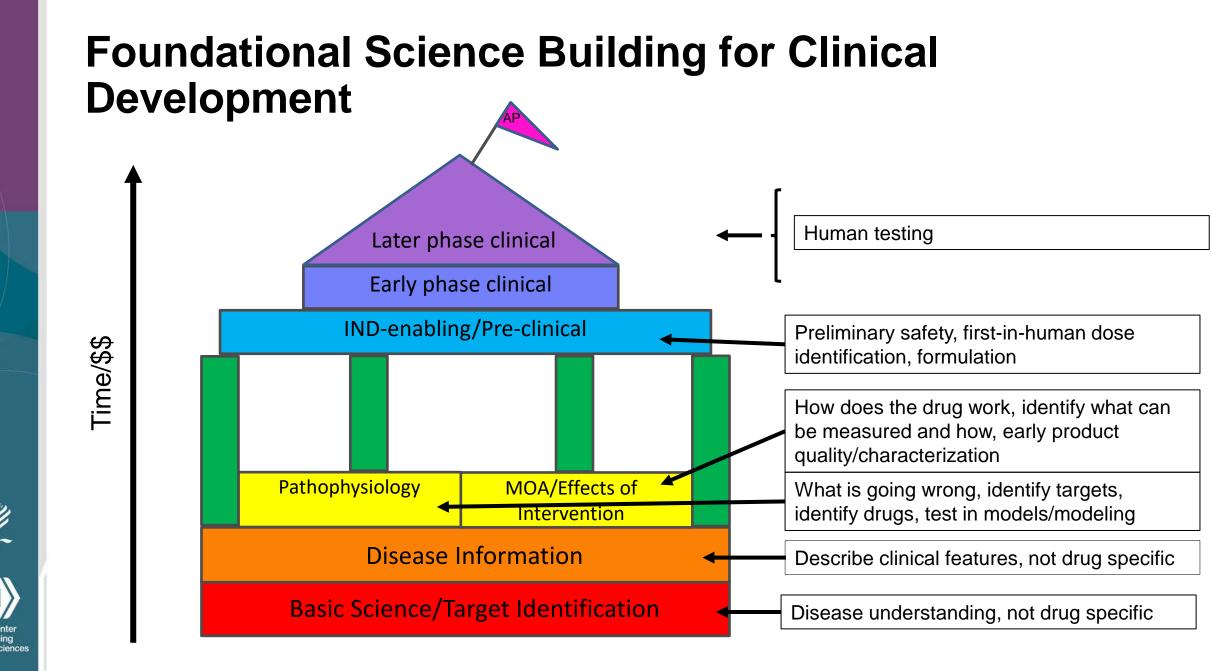
- "an emerging approach for disease treatment and prevention that takes in to account individual variability in genes, environment, and lifestyle for each person"¹
- "Interventions tailored to individuals or groups, rather than one-size-fits all approaches"^{2,3}
- Aka "targeted therapy"
 - Take advantage of molecular differences in genes/cells/tissues for efficacy and/or safety of an intervention
 - E.g., target changes in cancer cells that help them grow, divide or spread

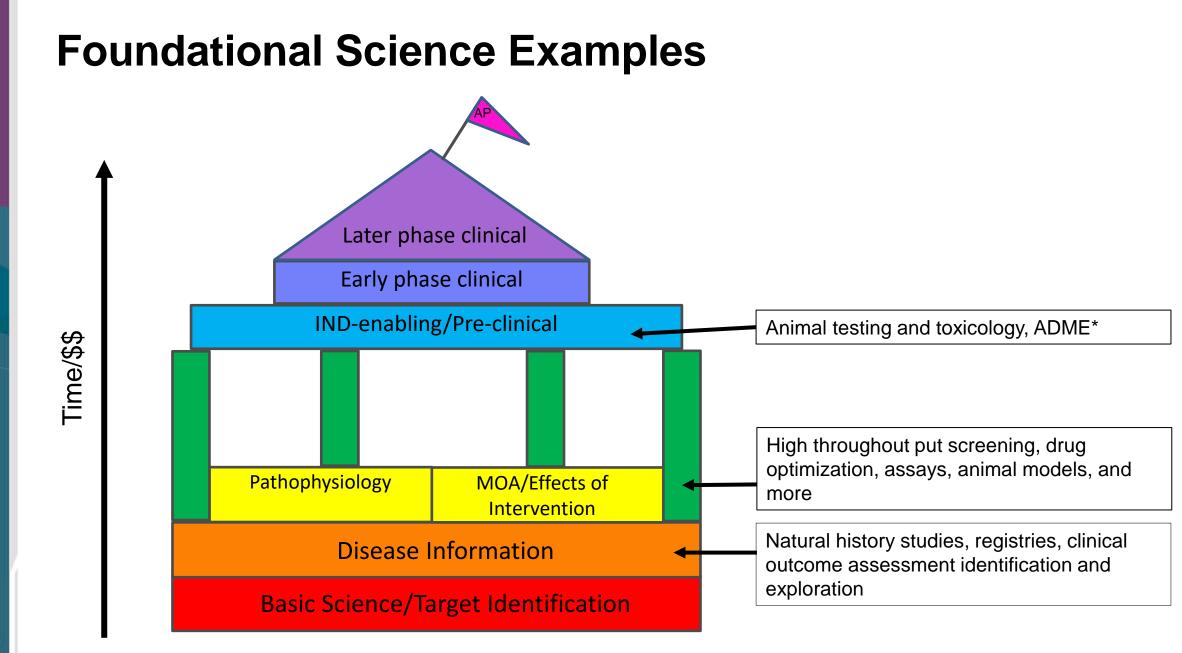
¹https://ghr.nlm.nih.gov/primer/precision,medicine/definition
²https://www.cdc.gov/features/precision-medicine/index.html
³https://www.fda.gov/medical-devices/vitro-diagnostics/precision-medicine



Clinical Development: Traditional Paradigm

Basic Research Translational Research Pre-IND Clinical Research Approved Product IND* Knowledge Animal NDA/BLA* Target Animal • • ullet● • Human identification models testing/ "Therapy" ulletPosttoxicology safety Molecular Initial ulletullet• ADME* PK/PD marketing formulation screening • • surveillance Human Assays Natural • ۲ • Biomarkers efficacy History • **Studies** Drug ۲ Clinical discovery ulletCandidate Outcome • selection/ Assessments *ADME = Absorption, distribution, metabolism, excretion IND = Investigational New Drug application optimization NDA = New Drug Application; BLA = Biologics Licensing Application





Clinical Development Overview

- "4D" Map*
 - <u>Drug Discovery</u>, <u>Development and Deployment</u>
- Dynamic representation of modern therapeutics development process*
- Development can start anywhere in the map
- Published in:
 - Nature Reviews Drug Discovery: <u>https://pubmed.ncbi.nlm.nih.gov/29269942/</u>
 - Clinical and Translation Science: <u>https://pubmed.ncbi.nlm.nih.gov/29271559/</u>

National Center for Advancing ranslational Sciences

*ADME = absorption, distribution, metabolism, excretion

What can patients do? A lot!

- Research process is long and unpredictable
 - Delays and resetting of timelines is very common (expected)
 - Setbacks = knowledge, not failure
- Many things can happen in parallel
 - Small investments at critical junctures can have big pay-offs
- Patients have special knowledge of their disease
 - Registries, natural history studies
 - Data quality and interoperability are important
 - Educate and bring together the community
- Scientific meetings are not just for scientists
 - Meet the researchers
 - Family "tracks" within meetings
 - Participate in research agenda setting process
- Share your stories they matter and people will listen
- Rare Diseases Are Not Rare
 - 30 million people in the US with a rare disease, 350 million worldwide
 - Join with other groups there is power in numbers

Resources for You

NCATS

- Toolkit for Patient-focused Therapeutics Development: <u>https://ncats.nih.gov/toolkit</u>
- Rare Diseases Registry Program (RaDaR): <u>https://registries.ncats.nih.gov/</u>
- Scientific Conference grants: https://ncats.nih.gov/funding/open/conference-grants

• FDA

Patient Affairs Staff: <u>https://www.fda.gov/about-fda/office-clinical-policy-and-programs/patient-affairs-staff</u>

NGATS

COLLABORATE. INNOVATE. ACCELERATE.

mcats.nih.gov

ORDR@nih.gov

in NIH-NCATS

Anne.pariser@nih.gov

